Development, Testing, and Deployment of Xeos Iridium Communication Systems

B. Bonnett, K. Anderson
B. Beaudoin, J. Fowler,
T. Parker and G. Tytgat
Development Background

- MRI – Development of a Power and Communications System for Remote Autonomous Polar Observations
 - Second year development deployed past season
 - Collaboration between IRIS PASSCAL & UNAVCO
- MRI – Acquisition of Broadband Seismic Stations for Polar Regions
 - Acquisition of 37 cold-hardened stations
 - Currently deployed at AGAP & POLENET
Development Requirements

- Low Power
 - Minimal Power Draw During Standby
- Rugged
 - -55 C Operation
 - Durable Connectors and Enclosure
- Simple Operation
 - LED Status
 - Field Testable
 - Easily Deployed
- Adaptable for Other Systems
 - 2 Way Communication
 - Ethernet Connections
 - Serial Connections
 - Weather Station Compatible
XI-100 PHASE I

- A3LA Iridium Modem
 - Configured for SBD Only
 - ~2 Kb/s Data Rate
- SOH and 10s Data Samples Only
- Command and Control of Connected Devices and Reporting Schedules
- 5 AHR Annual Power Budget for Daily SOH
 - 450 μA Sleep Mode
 - 150 mA During SBD
- Integration of Vaisala Weather Station
- Dimensions
 - 10.75" x 4.25" x 3.5"
XI-100 PHASE II

- SBD & RUDICS (Router-based Unrestricted Digital Internetworking Connectivity Solution)
- -55 deg C to +60 deg C Operational Range
 - Heaters Used to Keep AL3A Within Operational Limits
- 700 mA Current Draw During Transmission with Active Heater
- 350 mA Current Draw During Transmission w/o Heaters
- Data Transmission During Antarctic Summer
- 5 Units Awaiting Testing @ PASSCAL
XI-101 Development

- **XI-101**
 - Similar to XI-100
 - 9601 Iridium Modem
 - SBD only
 - ~2 Kb/s Data Rate
 - Lower Operation Cost
 - Lower Initial Cost
 - SOH and 10s Data Samples Only
 - Command and Control of Connected Devices and Reporting Schedules
 - 5 AHr Annual Power Budget for Daily SOH
 - Integration of Vaisala Weather Station
XI-100 Testing

- Environmental Testing
 - Hard Frozen to -60°C
 - Operated @ -50°C
 - Cycled -50 to 20°C
- Power Requirement Testing
- Data Transmission Testing
22 XI-100 (Phase I) Modules Deployed
 14 for POLENET
 Currently Operating @ -23 C
 8 for AGAP
 Currently Operating @-49 C
5 XI-100 Phase II Delivered to PASSCAL
 Awaiting Validation Test Results

5 XI-101 Delivered to PASSCAL
 1 Awaiting Deployment Near Yakutat, Alaska
 2 Awaiting Deployment on Yahtse Glacier
Deployment

- Sat Test
- Das Test
- Antenna
 - SAF5350-C
 - Coax Cable
 - LMR 400
Interface and Control

- **Web Console Developed by IRIS PASSCAL**
 - www.xeos.passcal.nmt.edu
- **SOH Display**
 - Iridium Message Statistics and Time Series Data
 - Weather Data from Vaisala Met Station
 - 10 Second Data Snippets
 - Q330 SOH Statistics and Time Series Data
- **Command and Control**
 - Device Configurations and Programming
 - Reporting Intervals
 - Sensor Control (i.e. Centering and Locking)
- **Phase II Control**
 - Switching between SBD & RUDICS
 - Request Download of Specific Data Sets
Interface and Control

Screen Shot From Iridium Console Device Summary
Interface and Control

Data Snippet Sample from AGAP Station N140
More Information & Design Docs

http://www.passcal.nmt.edu/Polar
http://www.xeos.passcal.nmt.edu
http://www.xeostech.com