Development & IPY Support

 UIKit – Development of a Power and Communications System for Remote Autonomous Polar Observations
 ◆ Second year development deployed this winter
 ◆ Leveraged development to support IPY science
 UIKit – Acquisition of Broadband Seismic Stations for Polar Regions
 ◆ Acquisition of 37 cold-hardened stations
 ◆ 20 currently deployed at AGAP & POLENET
Current Development

- Reduce Power
 - Work with manufacturers
 - Low bandwidth SOH
- Harness DAS heat
 - Increase battery potential
 - Operate within specification
- Simplify deployment
 - Minimize ground time & payload
- Utilize Primary batteries
 - Simple
 - Dependable at extreme cold
 - Highest energy density
PASSCAL Polar Station

- Proven year round operation
- Low power (<1.5W)
- Leverage DAS heat to maintain station temperature ~20-25°C above ambient
- 275 kg total station weight (with Lithium)
- Easily deployed
 - AGAP stations installed on average 2 hours
- 2-way station communications
 - SOH
 - Command & control
- Power management
Station review/performance

- Three installed last year
- All performed well
- The minimum installable Li pack lasted 85 instead of 90 days, 4 packs@2 watt load
- PSP01 was re-powered after the small pack was used up to continue testing Trillium T240 sensor
- PSP02 lasted full season despite Flexcharge solar controller failing in spring, ran 8.5 months on lithium
- PMC01 ran all season, no problems, 4.5 months on lithium
- All data available at DMC under station code XD
Highlights of Observed Performance

- Buried boxes have stable temp compared to surface boxes
- Phenolic blocks stable on snow for one season
- Redundancy good, power switching module keeps system running between two power sources
- Nanometrics Trillium sensors perform well in cold (Not cold rated -20C)
- Year round seismic station is possible!
Station Box

- Design
 - Hardigg Case
 - 94cm x 94cm x 94cm

- 7.6 cm Thick Foam Insulation
- 2.5 cm Thick Vacuum Panel
- 2.5 cm Thick Foam Insulation
- 1.9 cm Wall Cable Insulation
Colder rated Digitizer

- Quanterra Q330
- Rated to -45°C, was -40°C
- 32MB of buffering allows longer time between baler cycles saving 2/3 of the baler power budget from last year
- 16GB of -45°C rated station storage device (media rated to -55°C)
- Power budget for Q330, 3 channels @ 40sps and continuous GPS is ~0.8 watts
Cold Rated Guralp 3T

- MRI funded development of cold rated seismometer
- Coldest rated and lowest powered broadband sensor
- 0.3 Watts, -55°C rated, tested to -60°C
Nanometrics Trillium 240

- Successfully used for one season at South Pole
- 20 currently deployed for POLENET and AGAP
- 0.65 watts, -20°C rated
Development of SOH Iridium Telemetry

- Deployed but still in alpha testing of phase 1 of a two phase development
- Yearly power budget for once-a-day SOH, 5AH
- Data rate ~2.4 Kb/s
- Status and data snippets
- Command and control of a subset of important station commands and reporting schedules
- Developed in collaboration with XEOS Technologies
- Integration of Vaisala weather station - data averaging, reporting and power control
- Power control of external device

10s data snippet from Antarctica
New power switching board, lower parasitic power
- Switches between chargeable and primary batteries
- Charge controller, can use one charging source for two battery banks e.g. preferential charging
- LVD and HVR settable
- Cold culled to -50°C, 5 out of 30 fail because of charge controllers
Batteries

- Lithium Thionyl Chloride primary battery pack for winter operations
 - 190 A-h/unit between 18.5-15.5V
 - 10 unit pack
 - 30,000 W-h at room temperature
 - 23,000 W-h at -30°C
 - 16,500 W-h at -55°C
- AGM secondary, solar charged
 - 2x100 A-h

190 A-h unit prior to shrink wrap
Power Switching at PMC01

DAS Temperature

System Voltage
SPRESSO, PSP03

- Plateau seismic system test bed
- Designed to last over 2 years without service
- Uses new .3 watt Guralp cold rated 3T
- 3x 90W Sharp solar panels
- Snow vault, buried insulated dome
- Vacuum insulated enclosure design
- 2x 108AH AGM batteries for summer ops
- 20 Lithium 190AH@18V battery packs
- 1 watt heater powered by solar
- Ethernet coms to SPRESSO vault to DMC
- 1.5 watt load and under 700 pounds to install
Minna Bluff, PMC03

- Margin seismic system prototype
- New enclosure but only extruded polystyrene insulation used, 4 inches all around
- AGM batteries only, 8@108AH plus 2@35AH
- 160 watts of solar charging, 5 watts of wind
- 3 watt heater driven by either wind or solar
- 1.5 watt load
- Xeos SOH transmitter
Co-located with GPS MRI station
Solar panels have backing panel for armoring
Dead weighted with 4 gabions ~ 3000 pounds
New Development

- **New station box design**
 - Better insulated
 - Double vacuum panel
 - Insulated cable harness
 - More durable
 - Hard liner
 - More easily fabricated
 - Smaller and lighter
 - 76cm x 76cm x 84cm

- **New solar mount**
 - Low wind, high-latitude environment
 - Single pole
 - 32kg
 - 3x30W panels
New Development

- New cold-rated solar charge controller development
- Iridium phase two
 - Request event data
 - Realtime low sample rate data (<10Hz)
- Parallel iridium development with Quanterra
- Alternate battery technologies
 - Lithium Ion
More Information & Design Docs

http://www.passcal.nmt.edu/Polar