Polar Technology Conference
4/26/2007

Iridium Remote Data Transmission System

Andrew Young
SRI International
Purpose

- “Constraints on the physiology and growth of trees at the latitudinal treeline: integration of experimental and gradient approaches.”
 Dr. Patrick Sullivan,
 University of Alaska

- **Hourly Measurements**
 - MET Data
 - Soil Moisture Sensor Line
 - Soil Temperature Sensors

- **Daily Reporting**
 - Is the system still working?
 - Real-time data (daily versus yearly)
Design Team

- Worcester Polytechnic Institute – Senior Qualifying Project
 - Eric Hall
 - Peter Kanieg
 - Amanda Quigley
 - Eric Young

- VECO Polar Resources
 - Tracy Dahl
 - Andrew Young
CR1000 Datalogger Features

- H8S Hitachi Microcontroller
- CRBasic Programming Language
- RS232 Port
- 8 Control Ports
- 13 A/D Ports
- 2 Mbytes SRAM
Specifications

• Autonomous
 – Agashashok River 95 km Northeast of Kotzebue, AK.
 – Low Power, 20W PV
 – Operate in Polar Climates
 • -40° C, Ice and Snow

• Daily Transmissions
 – Data from each Sensor
 – System Health Check
 • Battery Voltages
 • Enclosure Temperatures
 • Solar Panel Voltage

• Insure datalogger runs
System Design Factors

- Commercial Service only
 - Airtime budget limited to $200/month
- ISU-to-ISU chosen over SBD or ISU-to-PSTN
 - Airtime costs significantly less for our amount of data
 - 5760 B/day (30 samples/hr)
 - Less Programming Complexity
 - Receiving emails versus handshaking
 - SBD message size limit and ordering
- Remote site pushes data chosen over Loggernet pulling data
 - No transceiver standby power needed
 - No time synchronization issues
 - No Loggernet or MS Windows
- Reliable Data Transfers
 - End to End Data Acknowledgement
System Design

Diagram showing the flow of data from a CSI Data Logger to an Iridium Transceiver, connected to a Satellite Network.
System Power Profile

Iridium Transceiver Current Profile

Datalogger Current Profile

<table>
<thead>
<tr>
<th></th>
<th>Energy/Day (Ah)</th>
<th>Energy/Year (Ah)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>0.0132</td>
<td>4.8161</td>
</tr>
<tr>
<td>Datalogger</td>
<td>0.0147</td>
<td>5.3778</td>
</tr>
<tr>
<td>System Total</td>
<td>0.0279</td>
<td>10.1939</td>
</tr>
</tbody>
</table>
Deployed System
Control circuitry
Power System Design

- Solar Array Mounted Vertically
- Separate Batteries for Communications and Datalogger
- Switching Circuit to turn on Iridium Transceiver

INDIA PV20 Solar Array → MorningStar SunGuard Charge Controller → Two Deka 8G31 Batteries
CRBasic Software

Tasks:
- Measure and Store Data
- Switch on Transceiver
- Control Communications
- Schedule Transmission
Data Management System

- Dell PowerEdge 720
 - Fedora Core Linux
 - Apache Web Server
 - TurboGears Application Server
 - Postgres Database
 - MATPLOT lib plotting library
 - Python Programming Language