BioLaunch

Faculty: James Cutler & Robert Twiggs
(Quakefinder and Stanford)
Lynn Rothschild
(NASA ARC and Stanford)
Students: Matt Maniscalco, Andy Sadhwani, Matt Hammond
Extremophile Sites

- Yellowstone
- Baja California
- Bolivian altiplano
- Hotsprings of New Zealand
- Australia
- Kenya
- Maine
- Lassen
- SF Bay
The Solar Spectrum

NASA Ames, 19 March 2007

Time matters!
2:13
2:41

Irradiance (µW/cm²/nm)

wavelength (nm)

γ-rays x-rays UV infrared microwaves radio waves

wavelength (m)

<table>
<thead>
<tr>
<th>wavelength (m)</th>
<th>10^-12</th>
<th>10^-11</th>
<th>10^-10</th>
<th>10^-9</th>
<th>10^-8</th>
<th>10^-7</th>
<th>10^-6</th>
<th>10^-5</th>
<th>10^-4</th>
<th>10^-3</th>
<th>10^-2</th>
<th>10^-1</th>
<th>10^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>irradiance</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

DNADNA proteinprotein
Background to project

• In January, we initiated **BioLaunch**, a collaboration between AA 236--Spacecraft Design (a four quarter series) and HumBio 183--Astrobiology and Space Exploration

• AA 236 built and managed the balloon platform, and select students from HumBio 183 designed, built and managed the science payload.

• Payload exploited vertical profile through atmosphere, and was a natural outgrowth of Rothschild’s astrobiology studies at Ames.
 – **Solar profile from ground level to ~30 km**
 – **Effect of solar radiation on DNA**
 – **Student run test of solar radiation on pre-biotic chemical**
Solar spectra: ratio at different altitudes in Chile and Bolivia, Feb. 2007
BioLaunch:
SSDL/Astrobiology Initiative

High-Altitude Balloons and NanoSatellites
Low-Cost Technologies Bridging the Gap for Scientific Research
• Space Systems Development Laboratory (SSDL)
 - Established ~ 1994

• Missions
 - Sapphire, Opal, QuakeSat-1, Genest
 - MAST
 - PolarBot, Antarctic weather stations

• Student demographics:
 - ~400 students throughout the years
 - Before 2000, all Stanford students
 - Now a mixture of industry
Flight Hardware and Experiments: Spectrometer Flight Box

- Spectroradiometer
- Radiation Exposed Cuvettes
- AstroChemistry Experiment
- PC104 Computer
- Webcam
- GPS and Radio Beacons
View from Flight

Pete’s Golf Course
Santa Cruz
Flight Profile
Flight Profile

Burst - 82,274

Landing Site

NASA Ames

Lick Observatory - Launch Site

Stanford Ground Station

© 2007 Europa Technologies
© 2007 Navteq
Image © 2007 TerraMetrics
Results

Temperature
Spectrometer
DNA damage
Prebiotic chem exp.
Temperature profile (ambient)
• Flight spectra are not higher than ground controls and suggest swinging of basket.
Spectrometer Data During Flight

-5.00E+00 0.00E+00 5.00E+00 1.00E+1 1.50E+1 2.00E+1 2.50E+1

0 100 200 300 400 500 600 700 800 900 1000

Wavelength (nm)

Irradiance

2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM

2.50E+01 2.00E+01 1.50E+01 1.00E+01 5.00E+00

Wavelength (nm)
DNA damage experiments

This includes two types of experiments.

1. **Base modification**, for example, the production of thymine dimers from adjacent thymines using a dosimeter made of herring sperm DNA.

2. **Nicking and breakage of the phosphate backbone** using supercoiled plasmid DNA.

<table>
<thead>
<tr>
<th>treatment</th>
<th>mean cpd/mb</th>
<th>st dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDNA flight dark</td>
<td>1047</td>
<td>100</td>
</tr>
<tr>
<td>HSDNA flight light</td>
<td>3729</td>
<td>679</td>
</tr>
<tr>
<td>HSDNA ground dark</td>
<td>1437</td>
<td>0</td>
</tr>
<tr>
<td>HSDNA ground light</td>
<td>3629</td>
<td>225</td>
</tr>
<tr>
<td>pUC flight dark</td>
<td>1300</td>
<td>50</td>
</tr>
<tr>
<td>pUC flight light</td>
<td>5365</td>
<td>704</td>
</tr>
<tr>
<td>pUC ground dark</td>
<td>986</td>
<td>0</td>
</tr>
<tr>
<td>pUC ground light</td>
<td>5308</td>
<td>682</td>
</tr>
</tbody>
</table>

666 A
659 T
675 C
686 G
total: 2686 bp
139 TT

so, total potential of 139 dimers in 2686 bp, or 51,749.8 dimers per megabase.
DNA damage experiments

This includes two types of experiments.

1. Base modification, for example, the production of thymine dimers from adjacent thymines using a dosimeter made of herring sperm DNA.

2. Nicking and breakage of the phosphate backbone using supercoiled plasmid DNA.

Results from Kenya, Jan 2007
Kyle Rothschild-Mancinelli

<table>
<thead>
<tr>
<th>Open circle</th>
<th>Linear DNA</th>
<th>Supercoiled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight exposed</td>
<td>Flight dark control</td>
<td>Ground exposed</td>
</tr>
</tbody>
</table>
How to explain these results?

1. The samples weren’t exposed to direct sun, i.e., the payload was not pointing up. *(check solar readings)*
2. The payload was shaded by the balloon. *(check solar readings)*
3. The samples were frozen, and the freezing cuts down on damage. *(controls in lab)*
4. The samples cuvettes were frozen over thus the samples were shaded by ice. *(camera)*
Hypothesis: The samples were frozen, and the freezing cuts down on damage.

- pUC19 was exposed in cuvettes to UV radiation in a sterilizing hood at the SETI Institute for 0, 5, 10 and 15 minutes.
- Results show less damage when the sample was frozen, even with the addition of glycerol.
Hypothesis: The samples were frozen, and the freezing cuts down on damage.

- pUC19 was exposed in cuvettes to UV radiation in a sterilizing hood at the SETI Institute for 0, 5, 10 and 15 minutes.
- Results show less damage when the sample was frozen, even with the addition of glycerol.
What does this mean?
Future plans...

- Balloons
- Long duration balloons
- Small sats
- Other vehicles
Acknowledgements

– Hector D’Antoni, Dana Rogoff and Joe Minafra, NASA Ames
– David Brock and the StratoFox Balloon Recovery Team
– Staff and Management of the James Lick Observatory
– Rangers and Volunteers at Henry Coe State Park
– Dr. George Sebestyen and IntelliTech Microsystems
– Ocean Optics and BigRedBee Companies